Search results for "experimental mechanics"

showing 10 items of 133 documents

Impact of Gamma Radiation on Dynamic RDSON Characteristics in AlGaN/GaN Power HEMTs

2019

GaN high-electron-mobility transistors (HEMTs) are promising next-generation devices in the power electronics field which can coexist with silicon semiconductors, mainly in some radiation-intensive environments, such as power space converters, where high frequencies and voltages are also needed. Its wide band gap (WBG), large breakdown electric field, and thermal stability improve actual silicon performances. However, at the moment, GaN HEMT technology suffers from some reliability issues, one of the more relevant of which is the dynamic on-state resistance (R) regarding power switching converter applications. In this study, we focused on the drain-to-source on-resistance (R) characteristic…

Materials scienceassurance testingRadiation effects02 engineering and technologyHigh-electron-mobility transistorradiation hardness01 natural scienceslcsh:Technologylaw.inventiontotal ionizing dose (TID)lawPower electronics0103 physical sciencesGeneral Materials Sciencelcsh:MicroscopyHigh-electron-mobility transistor (HEMT)Radiation hardeningLeakage (electronics)lcsh:QC120-168.85010302 applied physicsRadiation hardnessAssurance testinghigh-electron-mobility transistor (HEMT)lcsh:QH201-278.5business.industrylcsh:TTransistorWide-bandgap semiconductor021001 nanoscience & nanotechnologyThreshold voltageSemiconductorlcsh:TA1-2040Gallium nitride (GaN)adiation effectsradiation effectsOptoelectronicslcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringTotal ionizing dosegallium nitride (GaN)0210 nano-technologybusinesslcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Shedding Light on Graphene Quantum Dots: Key Synthetic Strategies, Characterization Tools, and Cutting-Edge Applications

2021

During the last 20 years, the scientific community has shown growing interest towards carbonaceous nanomaterials due to their appealing mechanical, thermal, and optical features, depending on the specific nanoforms. Among these, graphene quantum dots (GQDs) recently emerged as one of the most promising nanomaterials due to their outstanding electrical properties, chemical stability, and intense and tunable photoluminescence, as it is witnessed by a booming number of reported applications, ranging from the biological field to the photovoltaic market. To date, a plethora of synthetic protocols have been investigated to modulate the portfolio of features that GQDs possess and to facilitate the…

TechnologysynthesisComputer scienceNanotechnologyReview02 engineering and technology010402 general chemistry01 natural sciencesNanomaterialslaw.inventionlawhybrid materialsGeneral Materials Sciencedye-sensitized solar cellsMicroscopyQC120-168.85graphene quantum dotsGrapheneTunable photoluminescenceenergy storageTQH201-278.5021001 nanoscience & nanotechnologyEngineering (General). Civil engineering (General)0104 chemical sciencesCharacterization (materials science)TK1-9971Descriptive and experimental mechanicsQuantum dotKey (cryptography)Enhanced Data Rates for GSM EvolutionElectrical engineering. Electronics. Nuclear engineeringTA1-20400210 nano-technologyMaterials
researchProduct

Experimental Characterization of the Properties of Double-Lap Needled and Hybrid Joints of Carbon/Epoxy Composites

2015

The effect of through-thickness reinforcement by thin 1 mm steel needles (z-pins) on the static tensile strength of double-lap joints of a carbon/epoxy composite was investigated. Two types of joints—z-pinned and hybrid (including glued ones)—were considered. The joints were reinforced in the overlap region with 9, 25, or 36 z-pins. Comparing mechanical properties of the double-lap joints with the corresponding characteristics of their unpinned counterparts, the z-pins were found to be highly effective: the strength and stiffness of the pinned joints increased up to 300% and 280%, respectively. These improvements were due to a transition in the failure mechanism from debonding of the joint …

Materials scienceComposite numberchemistry.chemical_elementmechanical propertieslcsh:TechnologyArticlez-pinsUltimate tensile strengthmedicineGeneral Materials ScienceComposite materiallcsh:MicroscopyReinforcementJoint (geology)lcsh:QC120-168.85lcsh:QH201-278.5hybridlcsh:TStiffnessEpoxycarbon/epoxy compositeShear (sheet metal)carbon/epoxy composite; mechanical properties; joints; z-pins; hybridchemistrylcsh:TA1-2040jointsvisual_artvisual_art.visual_art_mediumlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringmedicine.symptomlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971CarbonMaterials
researchProduct

New Polylactic Acid Composites Reinforced with Artichoke Fibers

2015

In this work, artichoke fibers were used for the first time to prepare poly(lactic acid) (PLA)-based biocomposites. In particular, two PLA/artichoke composites with the same fiber loading (10% w/w) were prepared by the film-stacking method: the first one (UNID) reinforced with unidirectional long artichoke fibers, the second one (RANDOM) reinforced by randomly-oriented long artichoke fibers. Both composites were mechanically characterized in tensile mode by quasi-static and dynamic mechanical tests. The morphology of the fracture surfaces was analyzed through scanning electron microscopy (SEM). Moreover, a theoretical model, i.e., Hill's method, was used to fit the experimental Young's modu…

biocompositeScanning electron microscopy (SEM)Materials scienceMorphology (linguistics)Scanning electron microscopequasi-static tensile testsDynamic mechanical analysis (DMA)Moduluslcsh:TechnologyArticlefilm stackingFilm stackingQuasi-static tensile testschemistry.chemical_compoundMaterials Science(all)Polylactic acidArtichoke fiberPLA; artichoke fiber; biocomposites; film stacking; quasi-static tensile tests; dynamic mechanical analysis (DMA); scanning electron microscopy (SEM)Ultimate tensile strengthmedicinescanning electron microscopy (SEM).General Materials ScienceFiberComposite materiallcsh:Microscopylcsh:QC120-168.85biocompositesBiocompositesartichoke fiberlcsh:QH201-278.5lcsh:TPLA; artichoke fiber; biocomposites; film stacking; quasi-static tensile tests; dynamic mechanical analysis (DMA); scanning electron microscopy (SEM).Stiffnessdynamic mechanical analysis (DMA)Settore ING-IND/22 - Scienza E Tecnologia Dei Materiali/dk/atira/pure/subjectarea/asjc/2500chemistrylcsh:TA1-2040PLAlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringmedicine.symptomscanning electron microscopy (SEM)lcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971quasi-static tensile testMaterials
researchProduct

Physical Fundamentals of Biomaterials Surface Electrical Functionalization

2020

This article is focusing on electrical functionalization of biomaterial&rsquo

Materials scienceBiocompatibilitySurface finishElectric chargelcsh:TechnologyArticleoxygen vacanciesSurface roughnesssurfacepoint defectsGeneral Materials ScienceWork functionSurface chargelcsh:Microscopylcsh:QC120-168.85roughnesslcsh:QH201-278.5business.industrylcsh:Thydroxyapatiteelectrical chargeSemiconductorChemical engineeringlcsh:TA1-2040Surface modificationfunctionalizationlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringbusinesslcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971biomaterialsMaterials
researchProduct

Electronic Energy Meter Based on a Tunnel Magnetoresistive Effect (TMR) Current Sensor

2017

In the present work, the design and microfabrication of a tunneling magnetoresistance (TMR) electrical current sensor is presented. After its physical and electrical characterization, a wattmeter is developed to determine the active power delivered to a load from the AC 50/60 Hz mains line. Experimental results are shown up to 1000 W of power load. A relative uncertainty of less than 1.5% with resistive load and less than 1% with capacitive load was obtained. The described application is an example of how TMR sensing technology can play a relevant role in the management and control of electrical energy.

tunnel magnetoresistance; current sensor; energy meter; power measurement; wattmeter; internet-of-thingsEngineeringMagnetoresistancepower measurementPower factorlcsh:Technology01 natural sciencesArticlelaw.inventionElectricity meterlaw0103 physical sciencescurrent sensorinternet-of-thingsGeneral Materials ScienceCurrent sensorlcsh:Microscopylcsh:QC120-168.85wattmeter010302 applied physicslcsh:QH201-278.5lcsh:Tbusiness.industrytunnel magnetoresistance010401 analytical chemistryElectrical engineeringWattmeterAC powerenergy meterLine (electrical engineering)0104 chemical sciencesTunnel magnetoresistancelcsh:TA1-2040lcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)businesslcsh:TK1-9971Materials; Volume 10; Issue 10; Pages: 1134
researchProduct

Reactive Powder Concrete Containing Basalt Fibers: Strength, Abrasion and Porosity

2020

The paper presents the test results of basalt fiber impact on a compressive and flexural strength, resistance to abrasion and porosity of Reactive Powder Concrete (RPC). The reasons for testing were interesting mechanical properties of basalt fibers, the significant tensile strength and flexural strength, and in particular the resistance to high temperatures, as well as a relatively small number of RPC tests performed with those fibers and different opinions regarding the impact of those fibers on concrete strength. The composition of the concrete mix was optimized to obtain the highest packing density of particles in the composite, based on the optimum particle size distribution curve acc.…

Materials scienceporosityAbrasion (mechanical)0211 other engineering and technologies02 engineering and technologylcsh:TechnologyArticleFlexural strength021105 building & constructionUltimate tensile strengthGeneral Materials ScienceFiberComposite materialPorositylcsh:Microscopylcsh:QC120-168.85lcsh:QH201-278.5lcsh:TSuperplasticizerreactive powder concrete021001 nanoscience & nanotechnologybasalt fibersCompressive strengthlcsh:TA1-2040Basalt fiberabrasionlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologystrengthlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Effect of Graphene Nanoplatelets on the Physical and Antimicrobial Properties of Biopolymer-Based Nanocomposites

2016

In this work, biopolymer-based nanocomposites with antimicrobial properties were prepared via melt-compounding. In particular, graphene nanoplatelets (GnPs) as fillers and an antibiotic, i.e., ciprofloxacin (CFX), as biocide were incorporated in a commercial biodegradable polymer blend of poly(lactic acid) (PLA) and a copolyester (BioFlex®). The prepared materials were characterized by scanning electron microscopy (SEM), and rheological and mechanical measurements. Moreover, the effect of GnPs on the antimicrobial properties and release kinetics of CFX was evaluated. The results indicated that the incorporation of GnPs increased the stiffness of the biopolymeric matrix and allowed for the t…

BiocideMaterials scienceScanning electron microscopeKineticsAntimicrobial activity; Ciprofloxacin; Drug release; Graphene nanoplatelets (GnPs); Nanocomposites; Poly(lactic acid) (PLA); Materials Science (all)02 engineering and technologyengineering.material010402 general chemistry01 natural scienceslcsh:TechnologyArticlepoly(lactic acid) (PLA)ciprofloxacinnanocompositesGeneral Materials ScienceComposite materiallcsh:Microscopydrug releaselcsh:QC120-168.85NanocompositeNanocompositeantimicrobial activitylcsh:QH201-278.5lcsh:T021001 nanoscience & nanotechnologyAntimicrobialBiodegradable polymerCopolyestergraphene nanoplatelets (GnPs)0104 chemical sciencesChemical engineeringnanocomposites; graphene nanoplatelets (GnPs); poly(lactic acid) (PLA); antimicrobial activity; drug release; ciprofloxacinlcsh:TA1-2040engineeringlcsh:Descriptive and experimental mechanicsMaterials Science (all)Biopolymerlcsh:Electrical engineering. Electronics. Nuclear engineering0210 nano-technologylcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials; Volume 9; Issue 5; Pages: 351
researchProduct

Constructive Optimization of Vulcanization Installations in Order to Improve the Performance of Conveyor Belts

2019

Conveyor belts of special importance must have superior mechanical characteristics. The joining by vulcanization of the conveyor belts allows to obtain superior performances, but it has been found that at the vulcanizing joint of the conveyor belts, there is a &ldquo

Computer science020209 energyfinite element methodMechanical engineering02 engineering and technologylcsh:TechnologyConstructiveArticlelaw.inventionconstructive optimizationjointingNatural rubberlaw0502 economics and business0202 electrical engineering electronic engineering information engineeringGeneral Materials Sciencelcsh:Microscopylcsh:QC120-168.85050210 logistics & transportationInsert (composites)lcsh:QH201-278.5lcsh:T“bell”-type defect05 social sciencesVulcanizationconveyor beltsFinite element methodStiffeninglcsh:TA1-2040visual_artvisual_art.visual_art_mediumlcsh:Descriptive and experimental mechanicslcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)lcsh:TK1-9971Materials
researchProduct

Dehydration of Fructose to 5-HMF over Acidic TiO2 Catalysts

2020

Different solid sulfonic titania-based catalysts were investigated for the hydrothermal dehydration of fructose to 5-hydroxymethylfurfural (5-HMF). The catalytic behavior of the materials was evaluated in terms of fructose conversion and selectivity to 5-HMF. The surface and structural properties of the catalysts were investigated by means of X-ray diffraction (XRD), N2 adsorption isotherms, thermo-gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and acid capacity measurements. Special attention was focused on the reaction conditions, both in terms of 5-HMF selectivity and the sustainability of the process, choosing water as the solvent. Among the various process condition…

TitaniaSolid acid catalysts02 engineering and technology010402 general chemistrylcsh:Technology01 natural sciencesCatalysischemistry.chemical_compoundAdsorptionX-ray photoelectron spectroscopymedicineGeneral Materials ScienceBiomassDehydrationHydrothermal dehydrationlcsh:MicroscopyHMFlcsh:QC120-168.85lcsh:QH201-278.5lcsh:TChemistryFructose021001 nanoscience & nanotechnologymedicine.disease0104 chemical sciencesSolventlcsh:TA1-2040Yield (chemistry)lcsh:Descriptive and experimental mechanicsSettore CHIM/07 - Fondamenti Chimici Delle Tecnologielcsh:Electrical engineering. Electronics. Nuclear engineeringlcsh:Engineering (General). Civil engineering (General)0210 nano-technologySelectivitylcsh:TK1-9971Nuclear chemistryMaterials
researchProduct